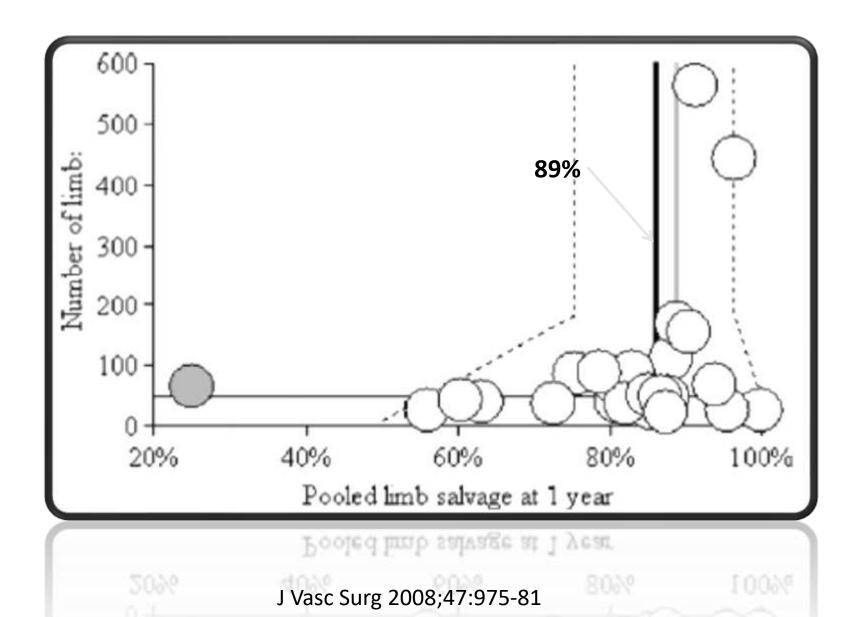

Evidence of DCB Treatment for Infrapopliteal Disease: 2021 Update


William A Gray MD System Chief of Cardiovascular Services, Lankenau Heart Institute Philadelphia, PA USA

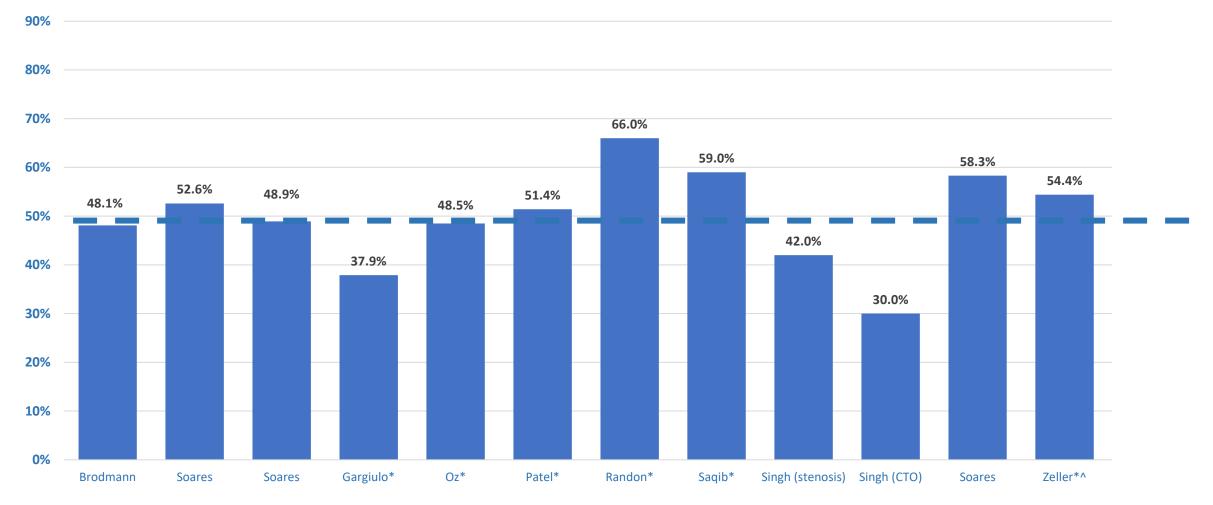
Goal of revascularization in CLI

Optimal vascularisation

Mets-analysis:12 month limb-salvage

Data from meta-analysis of infra-popliteal intervention for CLI

fable II. Meta-analysis results of crural percutaneous transluminal angioplasty and popliteal-to-distal bypass^a


Result	1 month	6 months	1 year	2 years	3 years
Primary patency			800 MRG - 100 - 1		1005 11 257
PTA	77.4 ± 4.1	65.0 ± 7.0	58.1 ± 4.6	51.3 ± 6.6	48.6 ± 8.0
Bypass	93.3 ± 1.1	85.8 ± 2.1	81.5 ± 2.0	76.8 ± 2.3	72.3 ± 2.7
Р	<.05	<.05	<.05	<.05	<.05
Secondary patency					
PTA	83.3 ± 1.4	73.8 ± 7.1	68.2 ± 5.9	63.5 ± 8.1	62.9 ± 11.0
Bypass	94.9 ± 1.0	89.3 ± 1.6	85.9 ± 1.9	81.6 ± 2.3	76.7 ± 2.9
P	<.05	<.05	<.05		
Limb salvage	222 0.0 0 000 22	1888-1880 - X00127		entente internation	
PTA	93.4 ± 2.3	88.2 ± 4.4	86.0 ± 2.7	83.8 ± 3.3	82.4 ± 3.4
Bypass	95.1 ± 1.2	90.9 ± 1.9	88.5 ± 2.2	85.2 ± 2.5	82.3 ± 3.0
Patient survival					
PTA	98.3 ± 0.7	92.3 ± 5.5	87.0 ± 2.1	74.3 ± 3.7	68.4 ± 5.5
Bypass	NA	NA	NA	NA	NA
Bypass	NA	NA	NA	NA	NA
PTA	98.3 ± 0.7	92.3 ± 5.5	87.0 ± 2.1	74.3 ± 3.7	68,4 ± 5,5
Patient survival					

J Vasc Surg 2008;47:975-81

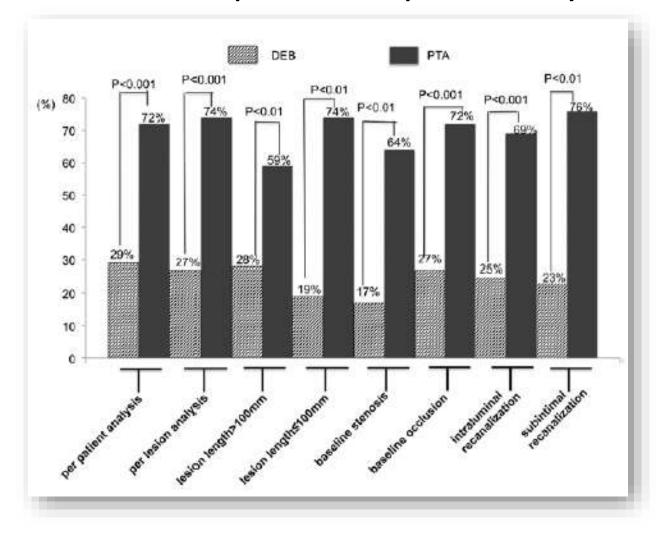
CLI and Below the Knee (BTK) Disease

- BTK disease is typically involved in the majority of CLI cases and is the sole cause in approximately 20 – 25%
 - High frequency of chronic total occlusion (CTO)
 - Commonly associated with diabetes
 - Calcified disease is common
 - Renal dysfunction common
 - Multivessel disease is common

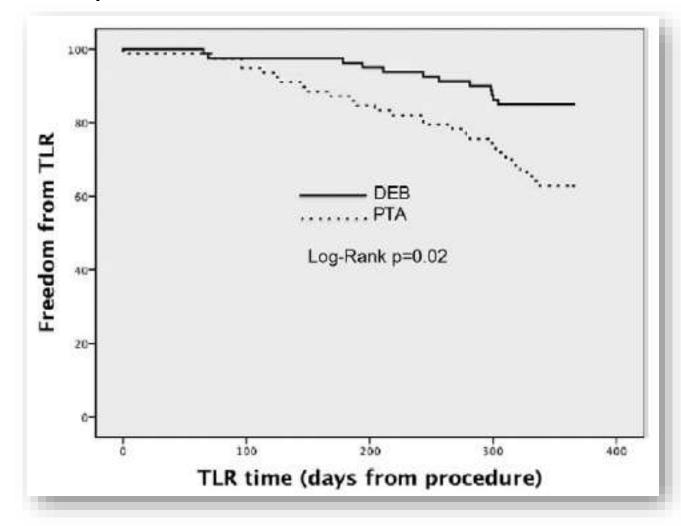
12M KM Patency in BTK Angioplasty (OPG data sets)

Observational data only • Patient populations and study methodologies differed • Not powered for statistical significance

*Patency includes freedom from CD-TLR ^Core lab adjudicated


What are the randomized clinical data?

Single-center, randomized, non-blinded IN.PACT Amphirion in diabetics: *successful* 2013

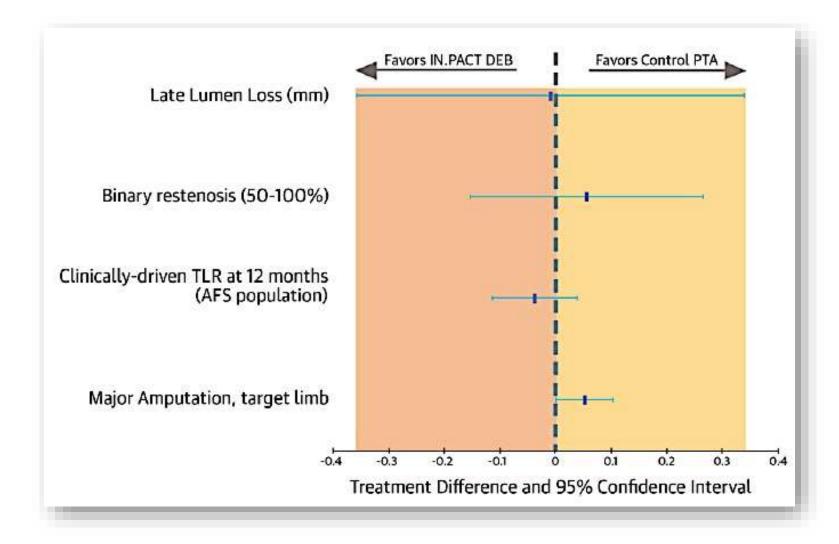

Drug-Eluting Balloon in Peripheral Intervention for Below the Knee Angioplasty Evaluation (DEBATE-BTK) A Randomized Trial in Diabetic Patients With Critical Limb Ischemia

Francesco Liistro, MD; Italo Porto, MD PhD; Paolo Angioli, MD; Simone Grotti, MD; Lucia Ricci, MD; Kenneth Ducci, MD; Giovanni Falsini, MD; Giorgio Ventoruzzo, MD; Filippo Turini, MD; Guido Bellandi, MD; Leonardo Bolognese, MD

DEBATE BTK 12 month angiography: DCB improves patency

DEBATE BTK: TLR improved with DCB at 12 months

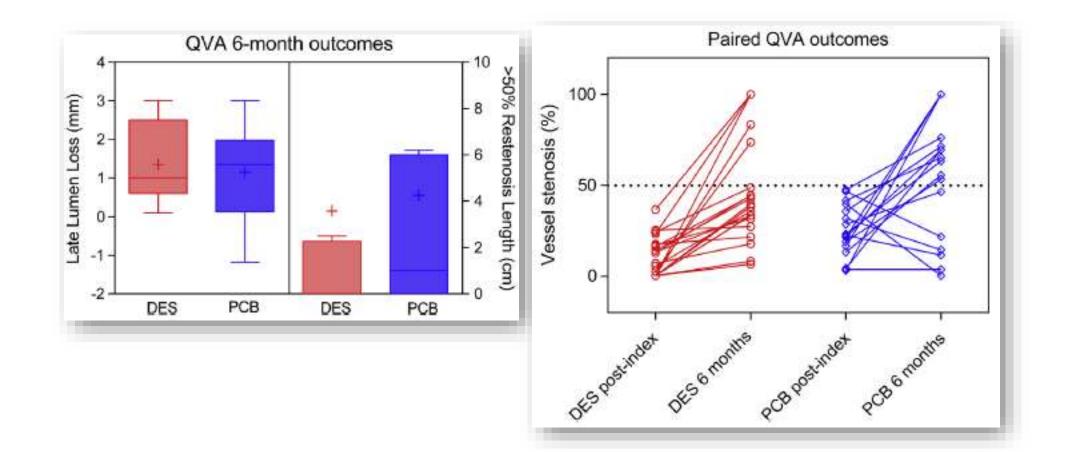
Randomized multicenter trial IN.PACT DEEP: unsuccessful 2014


Drug-Eluting Balloon Versus Standard Balloon Angioplasty for Infrapopliteal Arterial Revascularization in Critical Limb Ischemia

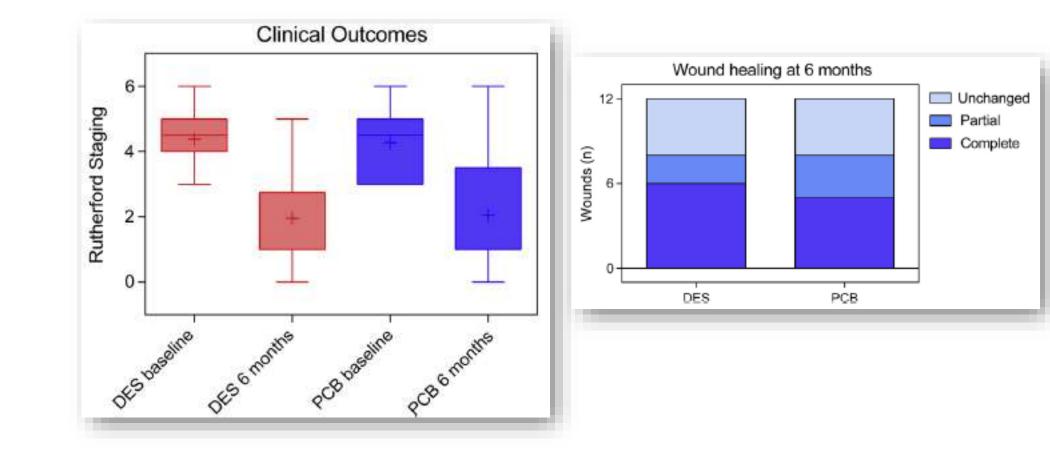
12-Month Results From the IN.PACT DEEP Randomized Trial

Thomas Zeller, MD,* Iris Baumgartner, MD,† Dierk Scheinert, MD,‡ Marianne Brodmann, MD,§ Marc Bosiers, MD, Antonio Micari, MD, PHD,¶ Patrick Peeters, MD, PHD,# Frank Vermassen, MD, PHD,** Mario Landini, MS,†† David B. Snead, PHD,†† K. Craig Kent, MD,‡‡ Krishna J. Rocha-Singh, MD,§§ IN.PACT DEEP Trial Investigators

IN.PACT DEEP: Relevant clinical outcomes


Single-center randomized DCB vs. DES: unsuccessful 2014

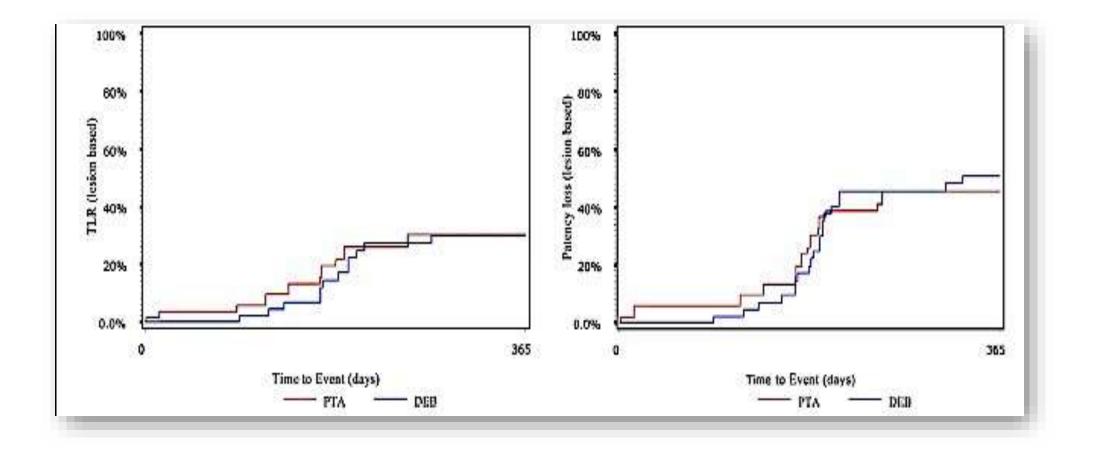
Paclitaxel-Coated Balloon Angioplasty Versus Drug-Eluting Stenting for the Treatment of Infrapopliteal Long-Segment Arterial Occlusive Disease


The IDEAS Randomized Controlled Trial

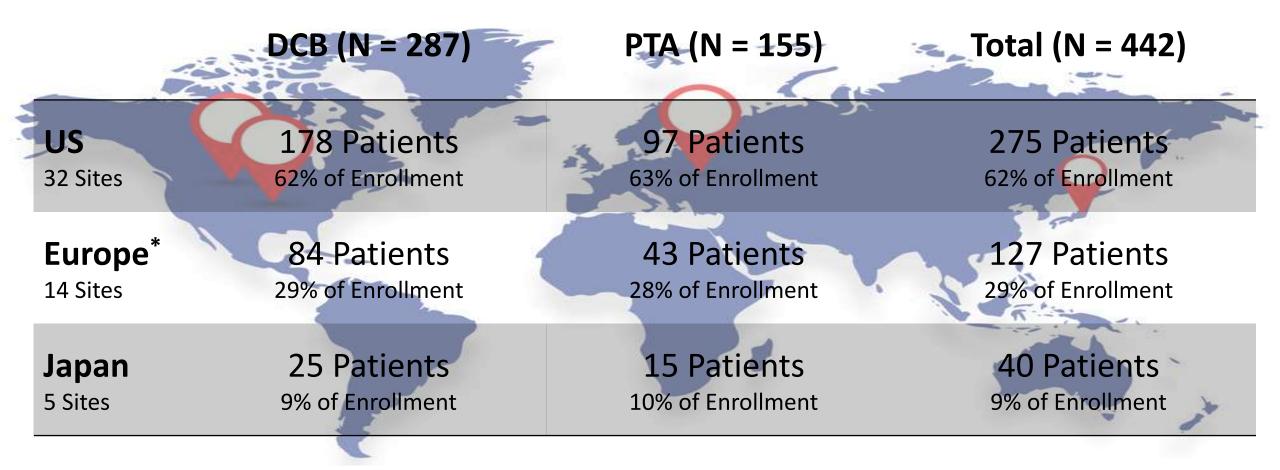
Dimitris Siablis, MD, PHD,* Panagiotis M. Kitrou, MD, PHD,* Stavros Spiliopoulos, MD, PHD,* Konstantinos Katsanos, MSc, MD, PHD,† Dimitris Karnabatidis, MD, PHD*

DES better than DCB in angiographic follow-up

Interestingly, clinical outcomes not significantly different


Randomized multicenter trial BIOLUX P-II: *unsuccessful* 2015

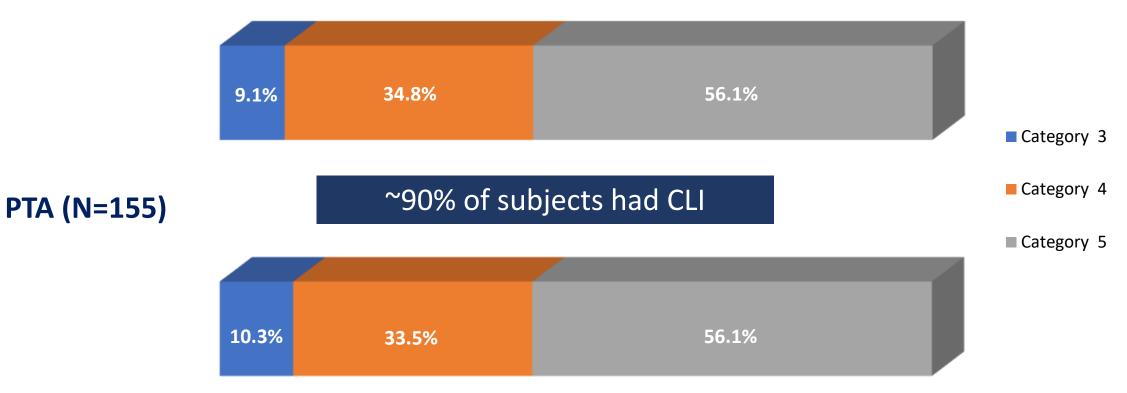
Paclitaxel-Coated Balloon in Infrapopliteal Arteries


12-Month Results From the BIOLUX P-II Randomized Trial (BIOTRONIK'S-First in Man study of the Passeo-18 LUX drug releasing PTA Balloon Catheter vs. the uncoated Passeo-18 PTA balloon catheter in subjects requiring revascularization of infrapopliteal arteries)

Thomas Zeller, MD,* Ulrich Beschorner, MD,† Ernst Pilger, MD,‡ Marc Bosiers, MD,§ Koen Deloose, MD,§ Patrick Peeters, MD,|| Dierk Scheinert, MD, PHD,¶ Karl-Ludwig Schulte, MD, PHD,# Aljoscha Rastan, MD,* Marianne Brodmann, MD, PHD‡

Biolux P-II: no difference in patency

Lutonix Global BTK Study Enrollment (Randomized)


Baseline Angio Data

	Treated Lesions DCB	Treated Lesions PTA		
Number of Lesions by Vessel, % (n/N) 1 2 3 6	85.4% (275/322) 12.1% (39/322) 2.2% (7/322) 0.3% (1/322)	79.2% (145/183) 18.6% (34/183) 2.2% (4/183) 0.0% (0/183)		
Mean Target Lesion Length, mm (n/N)	111.8 ± 92.6 mm (349/352)	94.7 ± 85.4 mm (206/213)		
Mean Initial % Stenosis, % (n/N)	86.7 ± 14.5% (352/352)	84.8 ± 14.5% (212/213)		

Baseline Angio Data (Cont.)

	Treated Lesions DCB	Treated Lesions PTA		
Mean RVD, mm (n/N)	2.5 ± 0.61 mm (350/352)	2.6 ± 0.62 mm (212/213)		
Run-off Present through Foot, % (n/N)	94.5% (310/328)	95.0% (192/202)		
Any Calcification, % (n/N)	59.9% (211/352)	54.2% (115/212)		
Severe Calcification, % (n/N)	15.1% (53/352)	13.2% (28/212)		
CTO, % (n/N)	36.1% (137/380)	33.3% (75/225)		

Baseline Rutherford Category DCB (N=287)

P-Value 0.9181

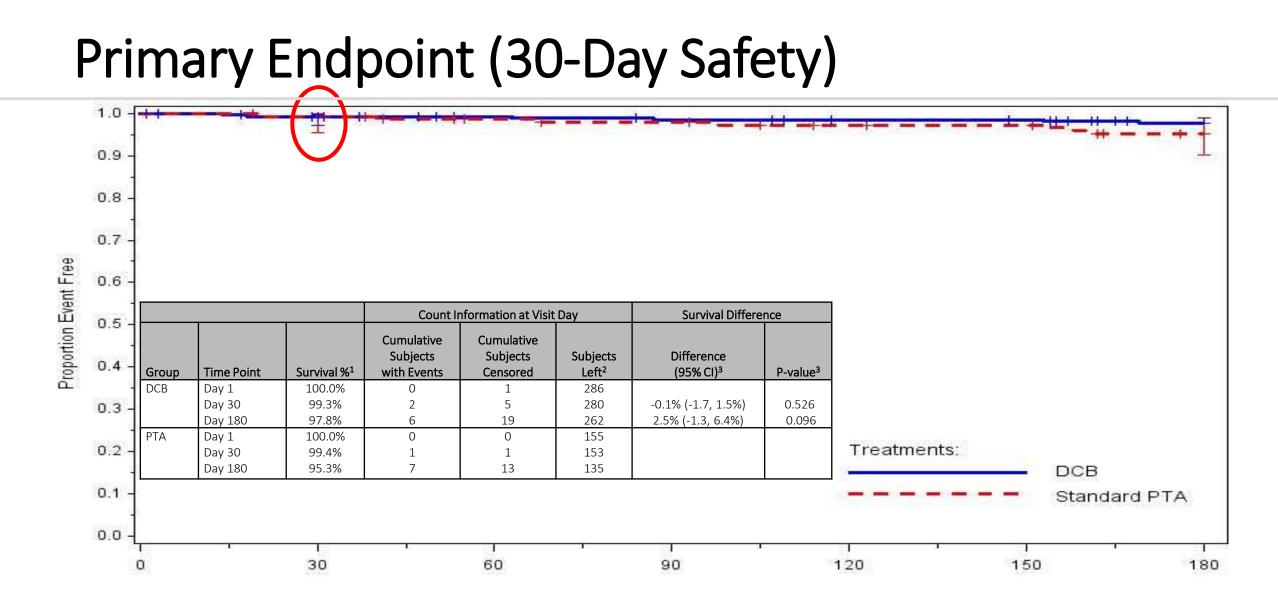
Baseline Angio Data (Cont.)

	DCB	ΡΤΑ		
Lesion Locations, % (n/N)				
Popliteal	8.7% (33 / 380)	7.6% (17 / 225)		
Tibioperoneal Trunk	23.9% (91 / 380)	25.3% (57 / 225)		
Anterior Tibial	38.4% (146 / 380)	36.0% (81 / 225)		
Posterior Tibial	23.7% (90 / 380)	25.8% (58 / 225)		
Peroneal	23.4% (89 / 380)	20.9% (47 / 225)		

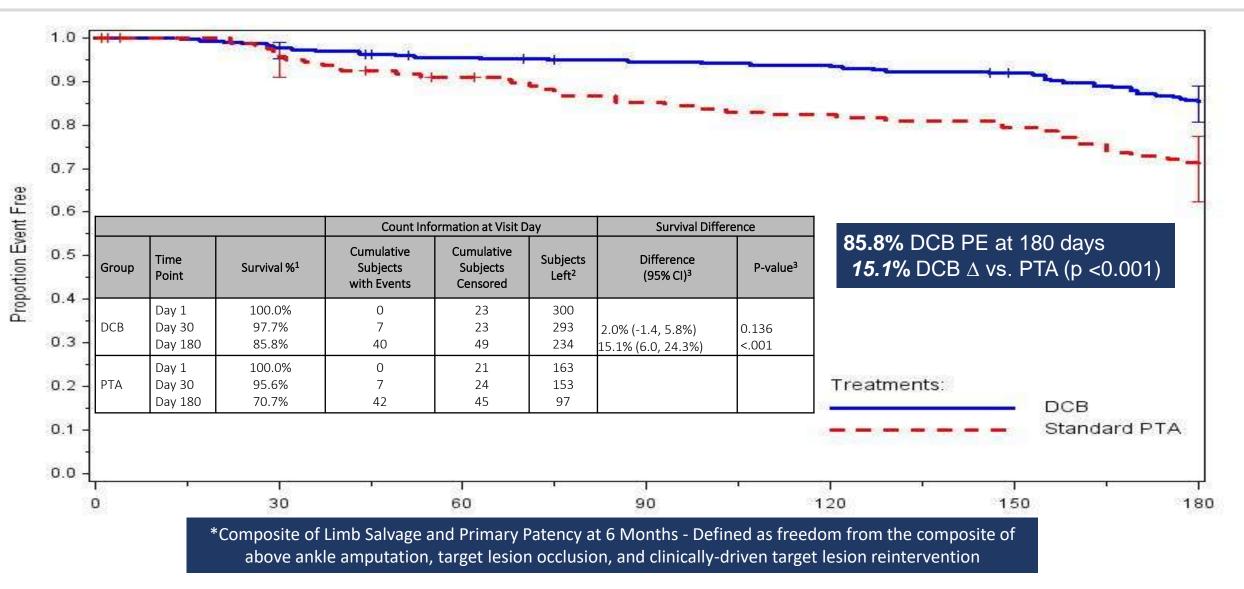
Primary Endpoints

SAFETY

Freedom from Major Adverse Limb Events (MALE) & All-Cause Perioperative Death (POD) at 30 Days

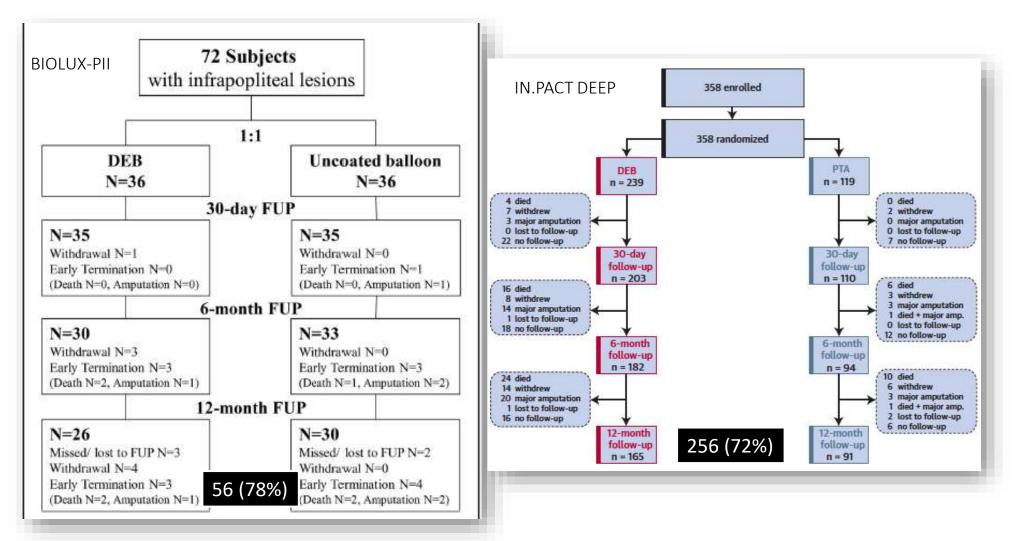

★ Amputation (above ankle)

- ★ Major re-intervention
- New bypass graft
- Jump/interposition graft revision
- Thrombectomy/thrombolysis


EFFICACY

Composite of Limb Salvage and Primary Patency at 6 Months

★ Defined as freedom from a composite of above ankle amputation, target lesion occlusion, and clinically-driven target lesion revascularization

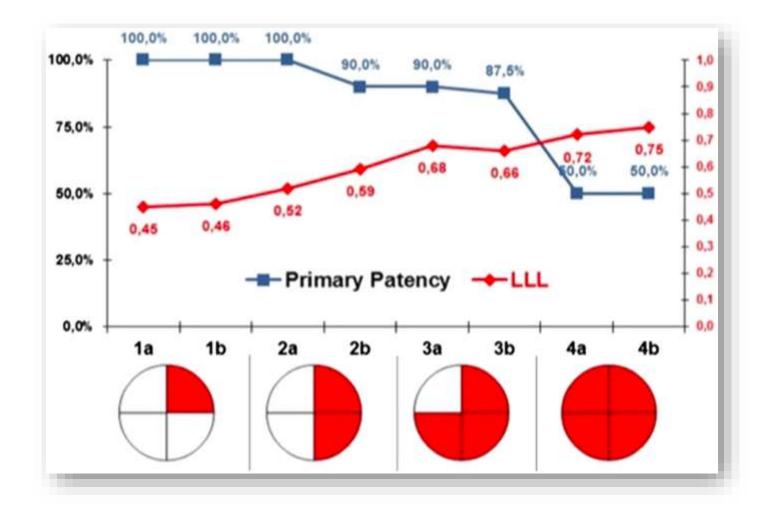


Primary Endpoint* (KM 6 Mo. Efficacy)

What are the causes for DCB failure?

The challenges with BTK trials: subject loss

IN.PACT DEEP: Root Cause Analysis

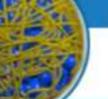

Key Factors:

- 1. Older technology (balloon material) provided insufficient drug delivery
- 2. Trial enrolled high risk subjects predisposed to safety event independent of intervention

Contributing Factors / Additional Points of Interest:

- 1. Procedural differences between study arms led to higher rate of procedural complications in DCB
- 2. Inadequate sample size and excessive loss of follow-up
- 3. The DCB major amputation rate was consistent with historical data and there were no unusual events caused by IN.PACT[™] Amphirion[™]
- 4. Unprecedented, favorable PTA major amputation rate

Is calcium really the problem?



Calcium not prominent in failed trials

TABLE 3 Baseline Angiographic and Pr	ocedural	Character	istics (ITT Populati	on)			
IN.PACT DEEP		-DEB	РТА	p Value			
Lesion length, cm 10.1		± 9.10	12.86 ± 9.46	0.002			
Lesion length in angiography cohort, cm 5.		1 ± 4.17 7.97 \pm 7.46 0.06		0.060			
Reference vessel diameter, mm	2.46	TABLE 2 Lesion Characteristics at Baseline and I			Follow-Up Pe	er	
Total occlusions		Core Laboratory Assessment					
Restenotic lesions	6.7 (Baselin e*		
Severe calcium	13.7 (BIOLUX P-II		-	DEB	PTA	p Value	
		n			50	54	
		Lesion locat	tion				
		Anterior t	tibial artery		24 (48.0)	25 (46.3)	
		Posterior	tibial artery		11 (22.0)	12 (22.2)	0.693
		Peroneal	artery		7 (14.0)	11 (20.4)	0.000
		Tibiopero	neal trunk		5 (10.0)	2 (3.7)	
		Other			3 (6.0)	4 (7.4)	
		Calcification	1t				-
		None			19 (55.9)	31 (81.6)	0.018
		Mild			6 (17.6)	4 (10.5)	0.501
		Moderate	2		1 (2.9)	0 (0.0)	0.472
		Moderate	/severe		3 (8.8)	1 (2.6)	0.338
		Severe			5 (4.7)	2 (5.3)	0.243

Sirolimus-Eluting Balloon with Sustained Release

Proprietary MicroReservoir Technology

· Creation of MicroReservoirs combining sirolimus & biodegradable polymer

MedAl

- Sirolimus a proven safe & effective cytostatic drug
- · Offering a wider therapeutic range

MicroReservoirs: Miniature Drug-Delivery Systems

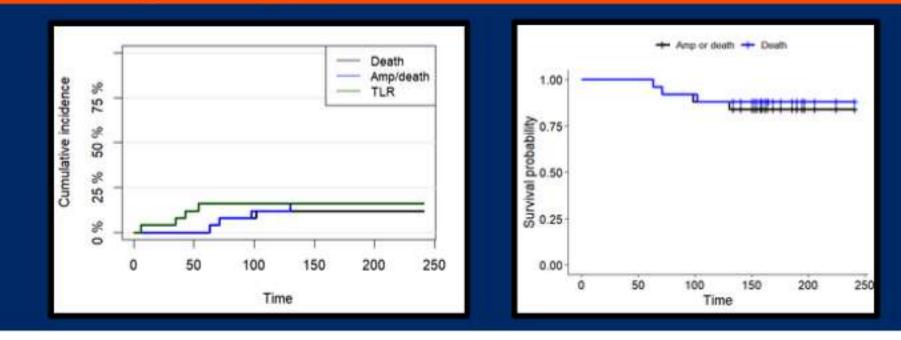
- Optimal size MicroReservoirs to achieve pharmaco- kinetic release profile comparable to best in class DES
- · Consistent and predictable drug release
- · Sustained therapeutic effect for up to 90 days 1.

Cell Adherent Technology (CAT™)

Proprietary amphipathic lipid technology which binds MicroReservoirs to the balloon surface

- · Contains and protects micro-reservoirs during insertion and inflation
- Enhances drug retention and bioavailability, allowing for a lower drug dose concentration on the balloon surface (1 µg/mm²).
- · Optimizes transfer of MicroReservoirs to the tissue and maximizes the cellular uptake of sirolimus,

1. Drug concentration evident in MicroReservoire and Usear - Data on the at N.A. Med Aliance SA.


PRESTIGE Trial

Physician initiated, prospective, non-Randomized singlecenter trial, investigating the safety and Efficacy of the Treatment with the Selution Sirolimus Coated Balloon in TASC C and D Tibial occlusive disease In patients with critical limb Ischemia from SinGaporE

NCT04071782

At 6 months...

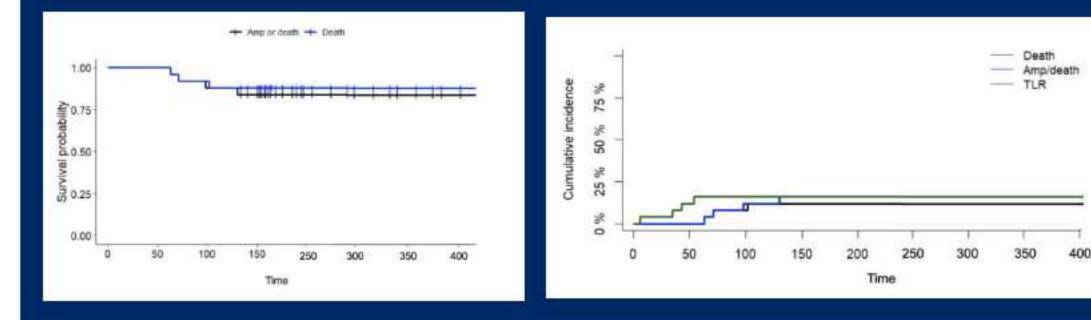
- Technical success : 100.0%
- Freedom from device- or procedure-related mortality through 30 days : 100.0%
- Freedom from Target Lesion Revascularization (TLR) : 92.6% (25/27)
- Amputation Free Survival (AFS): 84.0% (21/25); 3 deaths and 1 BKA
- Primary Patency rate : 81.5% (22/27)
- Wound healing : 81.8% (18/22)

Patient Demographics

Characteristics	Total patients = 25, n (%)			
Age, mean±sd	63.72 ± 9.73			
BMI, mean ± sd	24,40 ± 4.88			
Male gender	17 (68.0)			
Ethnic Group				
Chinese	18 (72.0)			
Malay	4 (16.0)			
Indian	3 (12.0)			
Co-Morbidities				
Diabetes	22 (88.0)			
Hypercholesterolemia	19 (76.0)			
Hypertension	22 (88.0)			
CVA in the past 12 months	1 (4.0)			
Myocardial Infarction	3 (12.0)			
Angina	2 (8.0)			
Congestive Heart Failure	4 (16.0)			
End Stage Renal Failure (ESRF)	11 (44.0)			
Rutherford Score 5	25 (100.0)			
Mean WIFi Score	3.72 ± 1.14			
Clinical Stages (Risk of Amputation)				
1 (Very Low Risk)	2 (8.0)			
2 (Low Risk)	9 (36.0)			
3 (Moderate Risk)	9 (36.0)			
4 (High Risk)	5 (20.0)			
Toe Pressure (mmHg), median (range)	37.5 (0 - 100)			

Search documents and file names for text

88% had DM


44% w/ ESRF 100% subjects are Rutherford 5

56.0% at moderate to high risk for amputations based on WIFi

At 12 months...

Sustained from 6 M

- Freedom from Target Lesion Revascularization (TLR) 92.6% (25/27)
- Amputation Free Survival (AFS): 84.0% (21/25): 3 deaths and 1 BKA
- Primary Patency rate 177.8% (21/27)
- Wound healing :81.8 (18/22)

Summary

- There remains very little data supporting the clinical efficacy of DCB BTK
- Specific causes include:
 - Calcification
 - High frequency of death early in follow up
 - Disassociation between patency and clinical outcomes
 - ?ineffectiveness of paclitaxel BTK
- Await novel approaches with non-PTX therapeutics